
Software Engineering
Internship

July 2024

Agenda

● Monday
○ Welcome & Orientation
○ Software Engineering & Version Control
○ Understanding APIs
○ Equity Evaluator project

● Tuesday
○ Javascript & React
○ Directus CMS Intro

● Wednesday
○ SQL Databases
○ Using Directus
○ Linux Basics

● Thursday
○ Kanban

Welcome!

infrastructureSquad is an initiative that promotes IT
Infrastructure Operations as a vehicle to teach youth and
encore career seekers about the practical applications of
computer science and engineering. We provide hybrid
training, mentorship, and opportunities for participants
to work on real-world products and services that support
their local communities.

Internship Goals

● Introduce Software Engineering
● Provide real-world experience with tools of the trade
● Kick-start the “Equity Evaluator” app
● Have fun!

Orientation: Important Stuff

● Official working hours: 0900-1700, M-F
● Dress code: you must wear clothes!
● Code of conduct

○ Don’t be a jerk
○ Support others
○ Be science-based
○ Have a good time!

● Contact me

Orientation: Other Stuff

● Folder: Notebook & some Wizard Zines (wizardzines.com)
● Desktops: Linux with PopOS 22.04 distro
● Home page: interns.infrastructuresquad.com
● Pick a workstation & login
● Introduction to Linux videos

○ Linux in 100 seconds
○ 100+ Linux Things You Need to Know

Software Engineering

If you know how to
code, are you a
software engineer?

Software Engineering in a Nutshell

Software Engineering is the application of engineering
principles to software development in a systematic method

Why?

● Ensures reliability and quality of software
● Facilitates project management and maintenance
● Enables scalability and efficiency in software solutions
● Reduces costs and time-to-market for software products

Software Development Life Cycle (SDLC)

● Planning:
○ Define project scope &

objectives
○ Gather requirements & create

specifications
○ Conduct research and/or

feasibility studies
● Development:

○ Writing and compiling code
○ Designing software architecture
○ Implementing algorithms and data

structures
● Testing:

○ Verifying software functionality
○ Identifying and fixing bugs
○ Ensuring software meets

requirements

● Deployment:
○ Releasing software to production
○ Managing versions and updates
○ Monitoring performance in the

real world
● Maintenance:

○ Updating software to adapt to
new requirements

○ Fixing bugs post-deployment
○ Improving performance and

usability

Version Control

Why is version control
important?

Why Version Control?

● Facilitates collaboration
○ Multiple developers can work on the same project simultaneously
○ Manage changes from different folks

● Provides backup & restore capabilities
○ Keeps history of all changes
○ Allows recovery in case of bugs or data loss

● Promotes accountability and auditing
○ Detailed log of who did what and when
○ Provides an archaeological record: “Why did we do that?!”

● Branching & merging
○ Supports creating branches for new features & bug fixes
○ Enables merging changes into main branch seamlessly

Git Basics

● Git: a distributed version control system by Linus Torvalds in
2005

● Distributed Architecture
○ Each developer has a local copy of the entire repository
○ Facilitates offline work and distributed collaboration

● Fast Performance
○ Optimized for speed and efficiency
○ Handles large projects with ease

● Branching and Merging:
○ Supports lightweight branching and efficient merging
○ Encourages experimentation and feature development

● Staging Area:
○ Allows fine-grained control over what gets committed
○ Facilitates incremental changes and testing

Git Platforms

● Provide repository hosting + extra features
● Public

○ GitHub
○ GitLab
○ Bitbucket

● Self-hosted
○ Gitea (we’ll be using this)

Git-ting Started

● Who are you?
○ git config --global user.name "Your Name"
○ git config --global user.email "your.email@example.com"

● Create a new repo
○ git init reponame

● Add new file or unstaged changes
○ git add mycoolthing.js

● What’s going on?
○ git status

● What’s changed
○ git diff

● Commit changes
○ git commit

mailto:your.email@example.com

Git Branching

● Create a new branch & switch to it
○ git switch -c mynewthing

● See what branches exist
○ git branch

● Switch to another branch that exists
○ git switch otherbranch

● Delete branch
○ git branch -d dead-to-me
○ git branch -D really-go-away

● What happened?
○ git log

Git Collaboration

● Clone remote repo
○ git clone {url}

● Add remote to local repo
○ git remote add origin {url}

● Fetch changes from remote
○ git fetch

● Fetch changes and merge into current branch
○ git pull

● Push changes
○ git push

Git Collaboration Problems

● Merge conflicts

● Stale local branch

Auto-merging file.txt
CONFLICT (content): Merge conflict in file.txt
Automatic merge failed; fix conflicts and then commit the result.

Pull Requests & Code Reviews

● Pull request (PR): request to merge changes to a tree
● Provide commentary in the PR as to what your changes do
● Once submitted, it’s ready for review
● One or more people (or programs) will review your request
● The approvers will approve or reject the request
● If approved, you should merge your change
● Reviewers ensure code quality and consistency
● PR process encourages collaboration and knowledge

transfer (bus insurance)

Let’s Practice!

● Clone the repo
● Create a branch
● Push your branch
● Create a PR
● Review a PR (feel free try out rejection!)
● Merge your PR if it was approved
● Switch back to ‘main’ branch & pull

Understanding APIs

What is an API?

An API (Application Programming Interface) is a set of rules
and protocols that allows one software application to interact
with another
● API models

○ Libraries
○ Remote Procedure Call (RPC)
○ REST
○ SOAP
○ GraphQL
○ gRPC

● Data encoding formats
○ JSON
○ XML
○ Protobuf
○ x-www-form-urlencoded

JSON vs XML

{"users":[{"id":1,"name":"John
Doe","email":"john.doe@example.com","posts
":[{"id":101,"title":"GraphQL
Introduction","content":"An introduction
to
GraphQL...","timestamp":"2024-07-05T12:34:
56Z"},{"id":102,"title":"Advanced
GraphQL","content":"Deep dive into
GraphQL...","timestamp":"2024-07-06T14:20:
00Z"}]},{"id":2,"name":"Jane
Smith","email":"jane.smith@example.com","p
osts":[{"id":103,"title":"REST API vs
GraphQL","content":"Comparing REST and
GraphQL...","timestamp":"2024-07-07T09:15:
45Z"}]}]}

 <users>
 <user id="1" name="John Doe"
email="john.doe@example.com">
 <posts>
 <post id="101" title="GraphQL Introduction"
content="An introduction to GraphQL..."
timestamp="2024-07-05T12:34:56Z"/>
 <post id="102" title="Advanced GraphQL"
content="Deep dive into GraphQL..."
timestamp="2024-07-06T14:20:00Z"/>
 </posts>
 </user>
 <user id="2" name="Jane Smith"
email="jane.smith@example.com">
 <posts>
 <post id="103" title="REST API vs GraphQL"
content="Comparing REST and GraphQL..."
timestamp="2024-07-07T09:15:45Z"/>
 </posts>
 </user>
 </users>

REST APIs

● REST = Representational State Transfer (Fielding, 2000)
● Resource-based, identified by URIs
● Use HTTP methods for specific purpose: GET, POST

(create), PUT (replace), PATCH (modify)
● Each request is stateless (independency; idempotency)
● Resources represented in a specific format (e.g. JSON,

XML)
● Uniform interface (typically HTTP)
● Infrastructure layers between client and server OK

Play Around with REST APIs

● Use Insomnia or curl
● https://apipheny.io/free-api/
● https://mixedanalytics.com/blog/list-actually-free-open-n

o-auth-needed-apis/
● https://github.com/public-apis/public-apis

https://apipheny.io/free-api/
https://mixedanalytics.com/blog/list-actually-free-open-no-auth-needed-apis/
https://mixedanalytics.com/blog/list-actually-free-open-no-auth-needed-apis/
https://github.com/public-apis/public-apis

