Software Engineering
Internship

' ‘A.<"A - ‘\\\
u /‘:'4. 'y y t\"’ ;:‘\
l A8 4!
I‘. ¥y ¥ Y 3

< Titanium
Forest



Agenda

e Monday

o Welcome & Orientation
Software Engineering & Version Control
Understanding APIs
Equity Evaluator project
e Tuesday

o Javascript & React

o Directus CMS Intro
e Wednesday

o SQL Databases

o Using Directus

o Linux Basics
e Thursday

o Kanban

o O O



Welcome!




infrastructureSquad

infrastructureSquad is an initiative that promotes IT
Infrastructure Operations as a vehicle to teach youth and
encore career seekers about the practical applications of
computer science and engineering. We provide hybrid
training, mentorship, and opportunities for participants
to work on real-world products and services that support
their local communities.

Titanium
Forest



Internship Goals

e Introduce Software Engineering
e Provide real-world experience with tools of the trade
e Kick-start the “Equity Evaluator” app

e Have fun!



Orientation: Important Stuff

e Official working hours: 0900-1700, M-F
e Dress code: you must wear clothes!

e Code of conduct
o Don’t be a jerk
o Support others
o Be science-based
o Have a good time!

e Contact me



Orientation: Other Stuff

e Folder: Notebook & some Wizard Zines (wizardzines.com)
e Desktops: Linux with Pop0OS 22.04 distro

e Home page: interns.infrastructuresquad.com

e Pick a workstation & login

e Introduction to Linux videos

o Linux in 100 seconds

o 100+ Linux Things You Need to Know



NETCR AT EHY




If you know how to
code, are you a
software engineer?



Software Engineering in a Nutshell

Software Engineering is the application of engineering
principles to software development in a systematic method

Why?

e Ensures reliability and quality of software

e Facilitates project management and maintenance

e Enables scalability and efficiency in software solutions
e Reduces costs and time-to-market for software products



Software Development Life Cycle (SDLC)

e Planning:

O

O

Define project scope &
objectives

Gather requirements & create
specifications

Conduct research and/or
feasibility studies

e Development:

O
(@]
o

Writing and compiling code
Designing software architecture
Implementing algorithms and data
structures

e Testing:

O
o
O

Verifying software functionality
Identifying and fixing bugs
Ensuring software meets
requirements

e Deployment:

O
O
O

Releasing software to production
Managing versions and updates
Monitoring performance in the
real world

e Maintenance:

O

Updating software to adapt to
new requirements

Fixing bugs post-deployment
Improving performance and
usability



Version Control




Why is version control
important?



Why Version Control?

e Facilitates collaboration
o Multiple developers can work on the same project simultaneously
o Manage changes from different folks
e Provides backup & restore capabilities
o Keeps history of all changes
o Allows recovery 1in case of bugs or data loss
e Promotes accountability and auditing
o Detailed log of who did what and when
o Provides an archaeological record: “Why did we do that?!”

e Branching & merging
o Supports creating branches for new features & bug fixes
o Enables merging changes into main branch seamlessly



Git Basics

e Git: a distributed version control system by Linus Torvalds 1in
2005

e Distributed Architecture
o Each developer has a local copy of the entire repository
o Facilitates offline work and distributed collaboration
e Fast Performance
o Optimized for speed and efficiency
o Handles large projects with ease
e Branching and Merging:
o Supports lightweight branching and efficient merging
o Encourages experimentation and feature development
e Staging Area:
o Allows fine-grained control over what gets committed
o Facilitates incremental changes and testing

git




Git Platforms

e Provide repository hosting + extra features

e Public

o GitHub
o GitLab
o Bitbucket

e Self-hosted
o Gitea (we’ll be using this)

O ¥ v U




Git-ting Started

e Who are you? SRy, wamems %
o git config --global user.name "Your Name" : 5
o git config -—-global user.email "your.email@example.com"
e (Create a new repo ~
o git init reponame
e Add new file or unstaged changes
o git add mycoolthing.js
e What’s going on?
o git status
e What’s changed
o git diff
e Commit changes
o git commit



mailto:your.email@example.com

Git Branching

Create a new branch & switch to it
o git switch -c mynewthing

See what branches exist
o git branch

Switch to another branch that exists
o git switch otherbranch

Delete branch
o git branch -d dead-to-me
o git branch -D really-go-away

What happened?
o git log



Git Collaboration

Clone remote repo
o git clone {url}
Add remote to local repo
o git remote add origin {url}
Fetch changes from remote
o git fetch
Fetch changes and merge into current branch
o git pull
Push changes
o git push



Git Collaboration Problems

e Merge conflicts

Auto-merging file.txt
CONFLICT (content): Merge conflict in file.txt

Automatic merge failed; fix conflicts and then commit the result.

e Stale local branch

= git pus
To I ST IFRY

master — master (fetch first)

hint: Updates were rejected because the remote contains work that you do not
hint: have locally. This 1s usually caused by another repository pushing to
hint: the same ref. If you want to integrate the remote changes, use

hint: 'git pull' before pushing again.




Pull Requests & Code Reviews

Pull request (PR): request to merge changes to a tree
Provide commentary in the PR as to what your changes do
Once submitted, it’s ready for review

One or more people (or programs) will review your request
The approvers will approve or reject the request

If approved, you should merge your change

Reviewers ensure code quality and consistency

PR process encourages collaboration and knowledge

transfer (bus dinsurance)



Let’s Practice!

TIPRACTICE TIME..

Clone the repo

Create a branch

Push your branch

Create a PR

Review a PR (feel free try out rejection!)
Merge your PR if it was approved

Switch back to ‘main’ branch & pull




Understanding APIs




-
What is an API? i

——— a5

An API (Application Programming Interface) is a set of rules
and protocols that allows one software application to interact
with another

e API models
o Libraries
o Remote Procedure Call (RPC)
o REST
o SOAP
o GraphQL
o gRPC
e Data encoding formats
o JSON
o XML
o Protobuf
o x-www-form-urlencoded



JSON vs XML

{"users":[{"id":1,"name" :"John
Doe'","email":"john.doe@example.com","posts
"e[{"id":101,"title":"GraphQL
Introduction","content":"An 1introduction
to
GraphQL...","timestamp":"2024-07-05T12:34:
562"}, {"i1d":102,"title":"Advanced
GraphQL","content":"Deep dive into
GraphQL...","timestamp":"2024-07-06T14:20:
00Z"}1},{"id":2,"name" :"Jane
Smith","email":"jane.smith@example.com","p
osts":[{"id":103,"title":"REST API vs
GraphQL","content":"Comparing REST and
GraphQL...","timestamp":"2024-07-07T09:15:

457"}131}

<users>
<user id="1" name="John Doe"
email="john.doe@example.com">
<posts>
<post id="101" title="GraphQL Introduction"
content="An 1introduction to GraphQL..."
timestamp="2024-07-05T12:34:56Z2" />
<post id="102" title="Advanced GraphQL"
content="Deep dive into GraphQL..."
timestamp="2024-07-06T14:20:00Z2" />
</posts>
</user>
<user id="2" name="Jane Smith"
email="jane.smith@example.com">
<posts>
<post id="103" title="REST API vs GraphQL"
content="Comparing REST and GraphQL..."
timestamp="2024-07-07T09:15:45Z2" />
</posts>
</user>
</users>



REST APIs

REST = Representational State Transfer (Fielding, 2000)
Resource-based, identified by URIs

Use HTTP methods for specific purpose: GET, POST
(create), PUT (replace), PATCH (modify)

Each request is stateless (independency; -idempotency)
Resources represented in a specific format (e.g. JSON,
XML )

Uniform interface (typically HTTP)

Infrastructure layers between client and server OK




Play Around with REST APIs

e Use Insomnia or curl
e https://apipheny.io/free-api/

e https://mixedanalytics.com/blog/list-actually-free-open-n
o—auth-needed-apis/

e https://github.com/public-apis/public-apis



https://apipheny.io/free-api/
https://mixedanalytics.com/blog/list-actually-free-open-no-auth-needed-apis/
https://mixedanalytics.com/blog/list-actually-free-open-no-auth-needed-apis/
https://github.com/public-apis/public-apis

