
SQL Practice Exercises
Exercise 1: Creating Tables

Objective: Create two tables, Students and Courses.

Instructions:

1. Create a table called Students with the following columns:

CREATE TABLE Students (
StudentID INTEGER PRIMARY KEY,
FirstName TEXT,
LastName TEXT,
Age INTEGER

);

2. Create a table called Courses with the following columns:

CREATE TABLE Courses (
CourseID INTEGER PRIMARY KEY,
CourseName TEXT,
StudentID INTEGER,
FOREIGN KEY (StudentID) REFERENCES Students(StudentID)

);

Exercise 2: Inserting Data

Objective: Insert data into the Students and Courses tables.

Instructions:

1. Insert the following data into the Students table:

INSERT INTO Students (StudentID, FirstName, LastName, Age) VALUES
(1, 'Alice', 'Johnson', 20),
(2, 'Bob', 'Smith', 22),
(3, 'Carol', 'Williams', 19);

2. Insert the following data into the Courses table:

INSERT INTO Courses (CourseID, CourseName, StudentID) VALUES
(1, 'Math', 1),
(2, 'Science', 2),
(3, 'History', 1),
(4, 'Literature', 3);

Exercise 3: Basic SELECT Queries

Objective: Retrieve data from the Students and Courses tables.

Instructions:

1. Select all columns from the Students table.

SELECT * FROM Students;

2. Select the first name and last name of all students.

SELECT FirstName, LastName FROM Students;

3. Select the names of all courses.

SELECT CourseName FROM Courses;

1



Exercise 4: WHERE Clause

Objective: Use the WHERE clause to filter data.

Instructions:

1. Select all students who are older than 20 years.

SELECT * FROM Students WHERE Age > 20;

2. Select all courses taken by student with StudentID 1.

SELECT * FROM Courses WHERE StudentID = 1;

Exercise 5: JOIN Queries

Objective: Use JOIN to combine data from multiple tables.

Instructions:

1. Perform an INNER JOIN to select students and their courses.

SELECT Students.FirstName, Students.LastName, Courses.CourseName
FROM Students
INNER JOIN Courses ON Students.StudentID = Courses.StudentID;

2. Perform a LEFT JOIN to select all students and their courses (including those without any courses).

SELECT Students.FirstName, Students.LastName, Courses.CourseName
FROM Students
LEFT JOIN Courses ON Students.StudentID = Courses.StudentID;

Exercise 6: UPDATE and DELETE

Objective: Update and delete data in the tables.

Instructions:

1. Update the age of student Bob Smith to 23.

UPDATE Students
SET Age = 23
WHERE FirstName = 'Bob' AND LastName = 'Smith';

2. Delete the course with CourseID 4.

DELETE FROM Courses WHERE CourseID = 4;

Exercise 7: Aggregate Functions

Objective: Use aggregate functions to perform calculations on data.

Instructions:

1. Count the number of students.

SELECT COUNT(*) AS NumberOfStudents FROM Students;

2. Find the average age of students.

SELECT AVG(Age) AS AverageAge FROM Students;

Exercise 8: GROUP BY Clause

Objective: Use the GROUP BY clause to group data and use aggregate functions.

Instructions:

1. Group students by age and count the number of students in each age group.

2



SELECT Age, COUNT(*) AS NumberOfStudents
FROM Students
GROUP BY Age;

2. Group courses by StudentID and count the number of courses each student is taking.

SELECT StudentID, COUNT(*) AS NumberOfCourses
FROM Courses
GROUP BY StudentID;

Exercise 9: HAVING Clause

Objective: Use the HAVING clause to filter grouped data.

Instructions:

1. Select age groups that have more than one student.

SELECT Age, COUNT(*) AS NumberOfStudents
FROM Students
GROUP BY Age
HAVING COUNT(*) > 1;

2. Select students who are enrolled in more than one course.

SELECT StudentID, COUNT(*) AS NumberOfCourses
FROM Courses
GROUP BY StudentID
HAVING COUNT(*) > 1;

Exercise 10: ORDER BY Clause

Objective: Use the ORDER BY clause to sort data.

Instructions:

1. Select all students and sort them by last name in ascending order.

SELECT * FROM Students
ORDER BY LastName ASC;

2. Select all courses and sort them by course name in descending order.

SELECT * FROM Courses
ORDER BY CourseName DESC;

Exercise 11: LIMIT Clause

Objective: Use the LIMIT clause to restrict the number of returned rows.

Instructions:

1. Select the first two students from the Students table.

SELECT * FROM Students
LIMIT 2;

2. Select the top two courses from the Courses table.

SELECT * FROM Courses
LIMIT 2;

Exercise 12: DISTINCT Clause

Objective: Use the DISTINCT clause to return unique values.

Instructions:

3



1. Select all unique ages from the Students table.

SELECT DISTINCT Age FROM Students;

2. Select all unique course names from the Courses table.

SELECT DISTINCT CourseName FROM Courses;

Exercise 13: Subqueries

Objective: Use subqueries to perform complex queries.

Instructions:

1. Select the names of students who are taking the ‘Math’ course.

SELECT FirstName, LastName FROM Students
WHERE StudentID IN (SELECT StudentID FROM Courses WHERE CourseName = 'Math');

2. Select the names of courses taken by students who are older than 20.

SELECT CourseName FROM Courses
WHERE StudentID IN (SELECT StudentID FROM Students WHERE Age > 20);

Exercise 14: ALTER TABLE

Objective: Modify the structure of an existing table.

Instructions:

1. Add a column Email to the Students table.

ALTER TABLE Students
ADD COLUMN Email TEXT;

2. Remove the Age column from the Students table.

ALTER TABLE Students
DROP COLUMN Age;

Exercise 15: Creating Indexes

Objective: Create indexes to improve query performance.

Instructions:

1. Create an index on the LastName column of the Students table.

CREATE INDEX idx_lastname ON Students(LastName);

2. Create a unique index on the CourseName column of the Courses table.

CREATE UNIQUE INDEX idx_coursename ON Courses(CourseName);

Exercise 16: Using Transactions

Objective: Use transactions to ensure data integrity.

Instructions:

1. Start a transaction, insert a new student, and then commit the transaction.

BEGIN TRANSACTION;
INSERT INTO Students (StudentID, FirstName, LastName, Age) VALUES (4, 'Dave', 'Miller', 21);
COMMIT;

2. Start a transaction, insert a new course, and then roll back the transaction.

4



BEGIN TRANSACTION;
INSERT INTO Courses (CourseID, CourseName, StudentID) VALUES (5, 'Art', 3);
ROLLBACK;

Exercise 17: Using Views

Objective: Create and use views to simplify complex queries.

Instructions:

1. Create a view called StudentCourses that shows student names and their courses.

CREATE VIEW StudentCourses AS
SELECT Students.FirstName, Students.LastName, Courses.CourseName
FROM Students
INNER JOIN Courses ON Students.StudentID = Courses.StudentID;

2. Select data from the StudentCourses view.

SELECT * FROM StudentCourses;

Exercise 18: Using Triggers

Objective: Create and use triggers to automate database tasks.

Instructions:

1. Create a trigger to log changes to the Students table.

CREATE TABLE StudentChanges (
ChangeID INTEGER PRIMARY KEY,
StudentID INTEGER,
ChangeType TEXT,
ChangeTime TIMESTAMP DEFAULT CURRENT_TIMESTAMP

);

CREATE TRIGGER LogStudentChanges
AFTER INSERT ON Students
BEGIN

INSERT INTO StudentChanges (StudentID, ChangeType) VALUES (NEW.StudentID, 'INSERT');
END;

2. Test the trigger by inserting a new student.

INSERT INTO Students (StudentID, FirstName, LastName, Age) VALUES (5, 'Eve', 'Taylor', 23);
SELECT * FROM StudentChanges;

Exercise 19: Handling NULL Values

Objective: Work with NULL values in the database.

Instructions:

1. Select all students who do not have an email address.

SELECT * FROM Students WHERE Email IS NULL;

2. Update the email address for student Alice Johnson and then select all students again.

UPDATE Students SET Email = 'alice.johnson@example.com' WHERE StudentID = 1;
SELECT * FROM Students;

5



Exercise 20: Exporting and Importing Data

Objective: Export data to a file and import data from a file.

Instructions:

1. Export the Students table to a CSV file.

.mode csv

.headers on

.output students.csv
SELECT * FROM Students;
.output stdout

2. Import data from a CSV file into the Courses table.

.mode csv

.import courses.csv Courses
SELECT * FROM Courses;

6


	SQL Practice Exercises
	Exercise 1: Creating Tables
	Exercise 2: Inserting Data
	Exercise 3: Basic SELECT Queries
	Exercise 4: WHERE Clause
	Exercise 5: JOIN Queries
	Exercise 6: UPDATE and DELETE
	Exercise 7: Aggregate Functions
	Exercise 8: GROUP BY Clause
	Exercise 9: HAVING Clause
	Exercise 10: ORDER BY Clause
	Exercise 11: LIMIT Clause
	Exercise 12: DISTINCT Clause
	Exercise 13: Subqueries
	Exercise 14: ALTER TABLE
	Exercise 15: Creating Indexes
	Exercise 16: Using Transactions
	Exercise 17: Using Views
	Exercise 18: Using Triggers
	Exercise 19: Handling NULL Values
	Exercise 20: Exporting and Importing Data


